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Abstract

We report on a search for the pair production of second generation scalar lepto-
quarks (LQ2) in pp̄ collisions at the center-of-mass energy

√
s = 1.96 TeV, using

data corresponding to an integrated luminosity of 294± 19 pb−1 recorded with the
DØ detector. No evidence for a leptoquark signal in the LQ2LQ2 → µqµq chan-
nel has been observed, and upper bounds on the product of cross section times
branching fraction were set. This yields lower mass limits of mLQ2

> 247GeV for
β = B(LQ2 → µq) = 1 and mLQ2

> 182GeV for β = 1/2. Combining these limits
with previous DØ results, the lower limits on the mass of a second generation scalar
leptoquark are mLQ2

> 251GeV and mLQ2
> 204GeV for β = 1 and β = 1/2,

respectively.

Key words: Second Generation Leptoquarks
PACS: 14.80.-j, 13.85.Rm

Leptoquarks, colored bosons which carry both lepton (l) and quark (q) quan-
tum numbers and third-integer electric charge, appear in several extensions
of the standard model of particle physics [1]. Leptoquarks could, in principle,
decay into any combination of a lepton and a quark. Experimental limits on
lepton number violation, on flavor-changing neutral currents, and on proton
decay, however, motivate the assumption that there would be three different
generations of leptoquarks. Each of these leptoquark generations couples to
only one generation of quarks and leptons, and, therefore, conserves the corre-
sponding lepton and quark family numbers [2]. As a consequence, leptoquark
masses could be as low as O(100GeV), allowing the production of leptoquarks
in reach of present collider experiments.

At the Tevatron collider, leptoquarks would be produced in pairs, primarily
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through qq̄ annihilation and gluon fusion. These production mechanisms would
be independent of the unknown coupling λ between the leptoquark, the lepton,
and the quark.

This analysis focuses on the search for pair-produced second generation scalar
leptoquarks (LQ2) in pp̄ collisions at

√
s = 1.96TeV. Assuming 100% branch-

ing fraction to a charged lepton and a quark, β = B(LQ2 → µq) = 1, a pair
of second generation leptoquarks, LQ2LQ2, decays into two muons and two
quarks. This decay will have no missing transverse energy. For β = 1/2, the
same final state is produced 25% of the time. The DØ collaboration published
95% confidence level (C.L.) mass limits for second generation scalar lepto-
quarks of mLQ2

> 200GeV (180GeV) for β = 1 (1/2) at
√
s = 1.8TeV, using

94 pb−1 of Run I Tevatron data [3]. Recent CDF analyses of dimuon + jet and
single muon + jet Run II Tevatron data give mLQ2

> 226GeV (208GeV) for
β = 1 (1/2), determined from 198 pb−1 of data [4].

The DØ Run II detector [5] is composed of several layered elements. Nearest
the beam is a central tracking system consisting of a silicon microstrip tracker
(SMT) and a central fiber tracker (CFT), both located within a 2T supercon-
ducting solenoidal magnet. Muon momenta are measured from the curvature
of muon tracks in the central tracking system. Jets are reconstructed from
energy depositions in the three liquid-argon/uranium calorimeters outside the
tracking system: a central section (CC) covering up to |η| ≈ 1.1 and two
end calorimeters (EC) extending coverage to |η| ≈ 4, all housed in separate

cryostats, where η = − ln
(

tan θ
2

)

denotes the pseudorapidity and θ is the
polar angle with respect to the proton beam direction. Scintillators located
between the CC and EC cryostats provide sampling of hadron showers for
1.1 < |η| < 1.4. A muon system beyond the calorimeters consists of a layer
of drift-tube tracking detectors and scintillation trigger counters before 1.8T
iron toroids, followed by two additional similar layers after the toroids [6].

The data used in this analysis were collected during Run II of the Fermilab
Tevatron collider between August 2002 and July 2004 and correspond to an
integrated luminosity of 294± 19 pb−1. The sample of candidate events used
in this search was collected with a set of triggers that required either one or
two muon candidates in the muon system. The trigger efficiency for the µjµj
events considered in this analysis was measured to be (89± 3)%.

Muons in the region |η| < 1.9 were reconstructed offline from hits in the three
layers of the muon system which were matched to isolated tracks in the central
tracking system to remove the background from heavy-quark production. This
muon isolation was assured by requiring the sum of the transverse momenta

of all other tracks in a ∆R =
√

(∆φ)2 + (∆η)2 < 0.5 cone around the muon
to be smaller than 4GeV, where φ is the azimuthal angle around the direction
of the incident beam. Cosmic ray muons were rejected by cuts on the timing
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in the muon scintillators and by removing back-to-back muons. Jets were
reconstructed using the iterative, midpoint cone algorithm [7] with a cone
size of ∆R = 0.5. The jet energies were calibrated as a function of the jet
transverse energy and η by balancing the transverse energy in photon plus
jet events. Requiring |η| < 2.4 for all jets removes the QCD background from
events with jets at very small angles to the beam direction and, therefore,
with large cross sections.

The background is dominated by the Drell-Yan (DY) events in the channel
Z/γ∗ → µµ (+jets). QCD multijet events faking muons are suppressed by
the isolation requirement and the thick shielding of the muon detectors. To
evaluate the contribution from DY background, samples of Monte Carlo (MC)
events were generated with pythia [8]. The number of pythia events was
normalized to yield the predicted next-to-next-to-leading order (NNLO) cross
section [9] at the Z-boson resonance. The events were furthermore reweighted
as a function of the dimuon mass in order to describe the NNLO prediction
for the differential cross section dσ/dmµµ [9]. An additional sample, generated
with alpgen [10] and based on a matrix-element calculation for Zjj, was
used to test systematic uncertainties due to the shape of the jet transverse
energy distribution. Samples of pythia tt̄ (mt = 175GeV) and WW samples
were used to estimate the background contributions from top quark and W
boson pair production. The signal efficiencies were calculated using samples of
LQ2LQ2 → µqµq events simulated with pythia for leptoquark masses from
140GeV to 300GeV in steps of 20GeV. All Monte Carlo events were generated
using CTEQ5L [11] parton distribution functions (PDFs) and processed using
a full simulation of the DØ detector based on geant [12] and the DØ event
reconstruction [5].

Offline, events were required to have two muons with transverse momenta pT
exceeding 15GeV and at least two jets with transverse energies ET greater
than 25GeV. The momentum resolution degrades with increasing pT , and
hence the resolution on the dimuon massm(µµ) with increasingm(µµ). There-
fore, in order to reduce the DY background at high m(µµ) and to account for
muon tracks with large momentum uncertainty, corrections were applied to
the muon momenta by taking advantage of the fact that no missing trans-
verse energy is expected in either signal or DY events. The missing transverse
energy 6ET was estimated from the transverse energy balance of all muons and
jets (ET > 20GeV) in the event. The momentum of the muon most opposite
to the 6ET direction in the r-φ plane (i.e. in the plane perpendicular to the
incident beam) was rescaled such that the component of the missing trans-
verse energy parallel to the muon vanished. This correction suppressed the
contribution from Z boson events misreconstructed in the high mass region
where the search for leptoquarks took place. To further reduce the background
from DY events a Z boson veto cut (dimuon mass m(µµ) > 105GeV) was ap-
plied. Six events survive this last cut, while 6.8±2.0 events are expected from
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standard model backgrounds, which mainly consists of DY (6.1± 2.0) and tt̄
(0.69± 0.07).

The remaining events after the Z boson veto cut were arranged in four bins.
Second generation leptoquark events are expected to have both high dimuon
masses and large values of ST , which is the scalar sum of the transverse energies
of the two highest-pT muons and the two highest-ET jets in the event, as can
be seen in Fig. 1b) for a leptoquark mass of 240GeV. The separation between
bin i and bin i− 1, i ∈ {1, 2, 3}, is defined as:

ST >
0.003

GeV
· (m(µµ)− 250GeV)2 + 180GeV + i · 70GeV.

This binning, which effectively results in bins in the order of increasing S/B,
is illustrated by the curved lines in Fig. 1 for the expected standard model
backgrounds, an example LQ2 signal, and for the data. The number of events
in the four signal bins is shown in Fig. 2.

Table 1 summarizes the efficiencies for various leptoquark masses, as well as
the numbers of expected background events and the distribution of the data
in the four signal bins. The signal efficiency increases with mass, because for
larger leptoquark masses, the decay products have larger momenta yielding
events with larger ST . The dominant uncertainty on the predicted number of
background events is due to MC statistics and varies between 7% and 25% for
the four signal bins. Other contributions arise from the jet-energy calibration
uncertainty (2% – 12%) and the uncertainty in the shape of the jet transverse
energy distribution (20%), which has been estimated by a comparison of the
pythia and alpgen simulations. The jet multiplicity in DY events generated
with pythia, which is a leading-order generator, was corrected in order to
reflect the multiplicity distribution observed in the data around the Z boson.
This was accomplished by comparing exponential fits to the inclusive jet mul-
tiplicity distribution in data and Monte Carlo. The fit is dominated by the
zero and one jet bins. The remaining difference in the two jet bin between
µjµj events in data and in the pythia Monte Carlo in the vicinity of the Z
boson resonance, 60GeV < m(µµ) < 105GeV, was taken as the corresponding
systematic uncertainty (16%). In addition, the following sources of systematic
uncertainties were taken into account: luminosity (6.5%), PDF uncertainty of
the DY processes (3.6%), and muon triggering and identification (5%). The
systematics, added in quadrature, are shown in Table 1. The systematic un-
certainties on the signal efficiencies arise from limited Monte Carlo statistics
(2% – 17%), jet-energy scale (3% – 13%), muon triggering and identification
(5%), and PDF uncertainty (2%).

No significant excess of data over background was observed. Upper limits on
the product of cross section times branching fraction, σ · β2, were calculated
as described in reference [13], by treating the four signal bins as individual
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channels. The likelihoods for the different bins were combined with correlations
of systematic uncertainties taken into account. The limits are calculated using
the confidence level CLS = CLS+B/CLB, where CLS+B is the confidence level
for the signal plus background hypothesis and CLB is the confidence level for
the background only [13].

The limits on the cross section times branching fraction and the theoretical
predictions [14] are shown in Fig. 3 and Table 2, as well as the average expected
limit assuming that no signal is present. Due to the larger background, the
contribution of bin 0 to the limit is relatively small. This explains why the
average expected limit is better than the observed limit, although the sum of
the events in all four bins is comparable to the background prediction. The
mass limit is extracted from the intersection of the lower edge of the next-to-
leading order (NLO) cross section uncertainty band with the observed upper
bound on the cross section. The uncertainty band reflects the PDF uncertainty
[15] as well as the variation of the factorization and renormalization scale
between mLQ2

/2 and 2mLQ2
, added in quadrature.

The lower limit on the mass of second generation scalar leptoquarks was deter-
mined at the 95% C.L. to be mLQ2

> 247GeV and mLQ2
> 182GeV for β = 1

and β = 1/2, respectively. The average expected limits aremexpected
LQ2

> 251GeV

and mexpected
LQ2

> 199GeV. Figure 4 shows the excluded region in the β versus
mLQ2

parameter space.

The DØ Run I analysis in the µjµj channel had no events after all cuts,
while 0.7± 0.5 events were expected from the background. A complementary
Run I analysis in the µjνj channel yielded no events for 0.7 ± 0.9 events
expected from standard model background [3]. Taking into account the smaller
cross section for the production of second generation scalar leptoquarks at the
Run I center-of-mass energy

√
s = 1.8TeV, these earlier results have been

combined with the Run II analysis presented in this Letter. The results are
summarized in Table 2 and the excluded parameter regions are shown in Fig.
4. The combined lower limit for scalar leptoquarks of the second generation
is mLQ2

> 251GeV (mLQ2
> 204GeV) for β = 1 (β = 1/2). These results

improve on previous measurements at the Tevatron collider [3,4] and are, for
large β, the most stringent limits on second generation scalar leptoquarks from
direct measurements to date.
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Fig. 1. Scalar sum of the transverse energies, ST , as a function of the dimuon mass:
a) for the SM background, b) for leptoquark signal with mass mLQ2

= 240GeV and
β = 1, and c) for data (the six events surviving the Z boson veto are highlighted).
The vertical line illustrates the Z boson veto and the curved lines show the bound-
aries between the signal bins (see text for definition). The distributions shown in a)
and b) are normalized to the integrated luminosity.
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Fig. 2. Distribution of events over the four bins as defined in the text for a scalar
leptoquark with mass mLQ2

= 240GeV and β = 1.
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Table 1. Signal efficiency (ε) for various scalar leptoquark masses, number of ex-

pected background events (Nbgd
pred), and the number of data events (Ndata).

Cut m(µµ) > 105 GeV Bin 0 Bin 1 Bin 2 Bin 3

ε(140 GeV) 0.139± 0.013 0.041± 0.004 0.036± 0.004 0.025± 0.003 0.038± 0.005

ε(160 GeV) 0.174± 0.016 0.026± 0.004 0.042± 0.004 0.040± 0.005 0.067± 0.008

ε(180 GeV) 0.197± 0.018 0.017± 0.002 0.038± 0.004 0.049± 0.005 0.093± 0.011

ε(200 GeV) 0.215± 0.019 0.009± 0.002 0.026± 0.004 0.047± 0.005 0.133± 0.015

ε(220 GeV) 0.223± 0.020 0.005± 0.001 0.016± 0.003 0.039± 0.005 0.163± 0.017

ε(240 GeV) 0.243± 0.021 0.005± 0.001 0.013± 0.002 0.032± 0.004 0.193± 0.018

ε(260 GeV) 0.251± 0.022 0.004± 0.001 0.009± 0.002 0.025± 0.004 0.212± 0.019

ε(280 GeV) 0.256± 0.022 0.003± 0.001 0.006± 0.001 0.018± 0.003 0.229± 0.020

ε(300 GeV) 0.263± 0.023 0.004± 0.001 0.004± 0.001 0.013± 0.002 0.242± 0.021

N
bgd

pred
6.760± 1.999 5.140± 1.565 0.958± 0.374 0.388± 0.144 0.274± 0.138

Ndata 6 2 2 2 0
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Fig. 3. Observed (closed circles) and expected (open triangles) 95% C.L. upper limit
on production cross section times branching fraction for second generation scalar
leptoquarks. The NLO theoretical predictions are also shown with error bands for
β = 1 and 1/2.
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Table 2. NLO cross sections for scalar leptoquark pair production in pp̄ collisions at√
s = 1.96TeV, expected and observed 95% C.L. upper limits on the cross section

times branching fraction for the analysis described in this Letter, and observed upper
limits for the Run I + Run II combination. The cross sections shown are calculated
using CTEQ6.1M as PDF [15] and mLQ2

as the factorization/renormalization scale
[14]. The uncertainties in the theoretical cross sections originate from a variation
of the renormalization and factorization scale between mLQ2

/2 and 2mLQ2
and the

PDF errors, added in quadrature.

mLQ2
σRun II

theory [pb] Run II limits on σ · β2 [pb] Run I+ II limits

[GeV]
√
s = 1.96TeV (expected) (observed) on σ · β2 [pb]

140 2.380+0.487
−0.448 0.130 0.181 0.144

160 1.080+0.225
−0.200 0.075 0.131 0.104

180 0.525+0.111
−0.096 0.063 0.105 0.083

200 0.268+0.057
−0.049 0.057 0.081 0.064

220 0.141+0.030
−0.025 0.049 0.066 0.052

240 0.076+0.017
−0.015 0.046 0.051 0.045

260 0.042+0.009
−0.008 0.043 0.047 0.042

280 0.023+0.005
−0.004 0.042 0.044 0.038

300 0.013+0.003
−0.002 0.040 0.042 0.037
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Fig. 4. In the (mLQ2
,β) plane, regions excluded at 95% C.L. by the D0 Run I results,

by this analysis, and by the combination of the two.
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